Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
2.
Infect Genet Evol ; 112: 105463, 2023 08.
Article in English | MEDLINE | ID: covidwho-20244841

ABSTRACT

Recent reports on identification of canine coronavirus (CCoV) in humans have emphasized the urgency to strengthen surveillance of animal CoVs. The fact that recombinations between CCoV with feline, porcine CoVs brought about new types of CoVs indicated that more attention should be paid to domestic animals like dogs, cats and pigs, and the CoVs they carried. However, there are about ten kinds of CoVs that infect above animals, and thus representative CoVs with zoonotic potentials were considered in this study. Multiplex RT-PCR against CCoV, Feline coronavirus (FCoV), porcine deltacoronavirus and porcine acute diarrhea syndrome coronavirus was developed to investigate the prevalence of CoVs from domestic dogs in Chengdu, Southwest China. Samples from a total of 117 dogs were collected from a veterinary hospital, and only CCoV (34.2%, 40/117) was detected. Therefore, this study focused on CCoV and its characteristics of S, E, M, N and ORF3abc genes. Compared with CoVs that are capable of infecting humans, CCoV strains showed highest nucleotide identity with the novel canine-feline recombinant detected from humans (CCoV-Hupn-2018). Phylogenetic analysis based on S gene, CCoV strains were not only clustered with CCoV-II strains, but also closely related to FCoV-II strains ZJU1617 and SMU-CD59/2018. As for assembled ORF3abc, E, M, N sequences, CCoV strains had the closest relationship with CCoV-II (B203_GZ_2019, B135_JS_2018 and JS2103). What's more, specific amino acid variations were found, especially in S and N proteins, and some mutations were consistent with FCoV, TGEV strains. Altogether, this study provided a novel insight into the identification, diversification and evolution of CoVs from domestic dogs. It is of top priority to recognize zoonotic potential of CoVs, and continued comprehensive surveillance will help better understand the emergence, spreading, and ecology of animal CoVs.


Subject(s)
Coronavirus Infections , Coronavirus, Canine , Dog Diseases , Animals , Dogs , Cats , Humans , Swine , Coronavirus, Canine/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Reverse Transcriptase Polymerase Chain Reaction , Phylogeny , Molecular Epidemiology , Mutation , Animals, Domestic , China/epidemiology , Dog Diseases/epidemiology
3.
Viruses ; 15(5)2023 05 17.
Article in English | MEDLINE | ID: covidwho-20236544

ABSTRACT

Since SARS-CoV-2 caused the COVID-19 pandemic, records have suggested the occurrence of reverse zoonosis of pets and farm animals in contact with SARS-CoV-2-positive humans in the Occident. However, there is little information on the spread of the virus among animals in contact with humans in Africa. Therefore, this study aimed to investigate the occurrence of SARS-CoV-2 in various animals in Nigeria. Overall, 791 animals from Ebonyi, Ogun, Ondo, and Oyo States, Nigeria were screened for SARS-CoV-2 using RT-qPCR (n = 364) and IgG ELISA (n = 654). SARS-CoV-2 positivity rates were 45.9% (RT-qPCR) and 1.4% (ELISA). SARS-CoV-2 RNA was detected in almost all animal taxa and sampling locations except Oyo State. SARS-CoV-2 IgGs were detected only in goats from Ebonyi and pigs from Ogun States. Overall, SARS-CoV-2 infectivity rates were higher in 2021 than in 2022. Our study highlights the ability of the virus to infect various animals. It presents the first report of natural SARS-CoV-2 infection in poultry, pigs, domestic ruminants, and lizards. The close human-animal interactions in these settings suggest ongoing reverse zoonosis, highlighting the role of behavioral factors of transmission and the potential for SARS-CoV-2 to spread among animals. These underscore the importance of continuous monitoring to detect and intervene in any eventual upsurge.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Swine , SARS-CoV-2/genetics , Nigeria/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Pandemics , RNA, Viral/genetics , Zoonoses/epidemiology , Animals, Domestic , Goats
4.
PLoS One ; 18(5): e0285245, 2023.
Article in English | MEDLINE | ID: covidwho-2316137

ABSTRACT

Pathogens transmitted between wildlife and domestic animals can pose a threat to endangered species, undermine conservation efforts in wildlife, and affect productivity and parasite control in domestic animals. There are several examples of pathogen transmission between European bison and other animals. The present study surveyed breeders from the vicinity of four large wisent populations in eastern Poland about observed contacts between wisent and cattle. Such contacts were noted by 37% of breeders, indicating a significant risk of contact between European bison and cattle in the study areas, even in the areas where the European bison live mainly in a forest complex, i.e., in the Borecka Forest. A higher potential risk of contacts between European bison and cattle was noted in the Bialowieska Forest and the Bieszczady Mountains than in the Borecka and Knyszynska Forests. In the Bialowieska Forest, the risk of viral pathogen transmission resulting from contacts is higher (more direct contacts), and in the case of the Bieszczady Mountains, the probability of parasitic diseases is higher. The chance of contacts between European bison and cattle depended on the distance of cattle pastures from human settlements. Moreover, such contact was possible throughout the year, not only in spring and fall. It appears possible to minimize the risk of contacts between wisent and cattle by changing management practices for both species, such as keeping grazing areas as close as possible to settlements, and reducing the time cattle graze on pastures. However, the risk of contact is much greater if European bison populations are large and are dispersed beyond forest complexes.


Subject(s)
Bison , Animals , Humans , Animals, Domestic , Animals, Wild , Endangered Species , Forests , Poland/epidemiology
5.
Emerg Infect Dis ; 29(3): 1-9, 2023 03.
Article in English | MEDLINE | ID: covidwho-2305357

ABSTRACT

The pathogens that cause most emerging infectious diseases in humans originate in animals, particularly wildlife, and then spill over into humans. The accelerating frequency with which humans and domestic animals encounter wildlife because of activities such as land-use change, animal husbandry, and markets and trade in live wildlife has created growing opportunities for pathogen spillover. The risk of pathogen spillover and early disease spread among domestic animals and humans, however, can be reduced by stopping the clearing and degradation of tropical and subtropical forests, improving health and economic security of communities living in emerging infectious disease hotspots, enhancing biosecurity in animal husbandry, shutting down or strictly regulating wildlife markets and trade, and expanding pathogen surveillance. We summarize expert opinions on how to implement these goals to prevent outbreaks, epidemics, and pandemics.


Subject(s)
Communicable Diseases, Emerging , Zoonoses , Animals , Humans , Zoonoses/epidemiology , Pandemics , Animals, Wild , Animals, Domestic , Communicable Diseases, Emerging/epidemiology , Disease Outbreaks
6.
Nat Commun ; 14(1): 2488, 2023 04 29.
Article in English | MEDLINE | ID: covidwho-2293756

ABSTRACT

Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.


Subject(s)
COVID-19 , Chiroptera , Viruses , Animals , Animals, Domestic/virology , Animals, Wild/virology , Animals, Zoo/virology , Chiroptera/virology , Mammals/virology , Pangolins/virology , Phylogeny , Zoonoses/virology
7.
Vet Med Sci ; 9(2): 982-984, 2023 03.
Article in English | MEDLINE | ID: covidwho-2266230

ABSTRACT

Lumpy skin disease (LSD) is a viral disease that affects farm animals including water buffalo. It is caused by the contagious LSD virus, a member of the Poxiviridae family's Capripox genus. Skin sores are thought to be the most common site of infection since the virus may live for lengthy periods in lesions or scabs. The first clinical indications of LSD were described in Zambia, in 1929. Pakistan has also been afflicted by LSD, with a high number of animals infected at many cattle ranches in Karachi, 190,000 cases of LSD have been reported nationwide, with greater than 7500 deaths attributable to the illness. LSD has a huge influence on Pakistan's economic status, resulting in the loss of cattle and a decrease in milk output. The Ministry of Research and National Food Safety in Pakistan has formed a working group to create a framework for controlling the spread of LSD in cattle and buffalo. Official and private veterinarians, both field and slaughterhouse, veterinary students, farmers, cattle merchants, cattle truck drivers, and artificial inseminators should all participate in awareness efforts.


Subject(s)
Cattle Diseases , Lumpy Skin Disease , Lumpy skin disease virus , Cattle , Animals , Lumpy Skin Disease/epidemiology , Pakistan/epidemiology , Milk , Animals, Domestic , Buffaloes , Cattle Diseases/epidemiology
8.
Res Vet Sci ; 157: 13-16, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2266092

ABSTRACT

The COVID-19 pandemic has been declared in late 2019. It is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Flu-like symptoms and acute respiratory illnesses are the main manifestations of the disease. Recent studies have confirmed the susceptibility of domestic animals to SARS-CoV-2 infection. However, the seroprevalence of SARS-CoV-2 in household pets and the importance of pets in the epidemiology of this infection remain unknown. In Lebanon, there is no epidemiological data regarding SARS-CoV-2 infection in companion animals. Thus, this investigation aimed to determine the seroprevalence of SARS-CoV-2 antibodies in household pets of Lebanon during the COVID-19 pandemic. A cross-sectional study was carried out between April 2020 and February 2021. Blood samples from 145 cats and 180 dogs were collected from 12 veterinary clinics located in the North, Mount, and Beirut governorates. A validated ELISA assay was used to detect the anti- SARS-CoV-2 in the sera of the tested animals. An overall seroprevalence of 16.92% (55/325) was reported; 13.79% seroprevalence was found in cats (20/145) and 19.44% (35/180) in dogs. The young age and the cold season were significantly associated with an increased seropositivity rate to SARS-CoV-2 infection (P < 0.01). These results confirm the circulation of SARS-CoV-2 in household pets, in various geographical regions in Lebanon. Although, there is a lack of evidence to suggest that naturally infected pets could transmit the SARS-CoV-2 infection. Yet, owners diagnosed with COVID-19 should limit their contact with their animals during the course of the disease to curb the risk of transmission.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Cats , Animals , Dogs , SARS-CoV-2 , Lebanon/epidemiology , Cross-Sectional Studies , Pandemics , Seroepidemiologic Studies , COVID-19/epidemiology , COVID-19/veterinary , Animals, Domestic , Antibodies, Viral , Cat Diseases/epidemiology , Dog Diseases/epidemiology
9.
Annu Rev Anim Biosci ; 11: 33-55, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2284296

ABSTRACT

Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.


Subject(s)
Communicable Diseases, Emerging , Virus Diseases , Animals , Humans , Animals, Domestic , Disease Reservoirs/veterinary , Zoonoses , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/veterinary , Virus Diseases/epidemiology , Virus Diseases/veterinary
10.
J Am Vet Med Assoc ; 261(7): 1045-1053, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2270116

ABSTRACT

OBJECTIVE: To provide epidemiological information on the occurrence of animal and human rabies in the US during 2021 and summaries of 2021 rabies surveillance for Canada and Mexico. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided data on animals submitted for rabies testing in 2021. Data were analyzed temporally and geographically to assess trends in domestic animal and wildlife rabies cases. RESULTS: During 2021, 54 US jurisdictions reported 3,663 rabid animals, representing an 18.2% decrease from the 4,479 cases reported in 2020. Texas (n = 456 [12.4%]), Virginia (297 [8.1%]), Pennsylvania (287 [7.8%]), North Carolina (248 [6.8%]), New York (237 [6.5%]), California (220 [6.0%]), and New Jersey (201 [5.5%]) together accounted for > 50% of all animal rabies cases reported in 2021. Of the total reported rabid animals, 3,352 (91.5%) involved wildlife, with bats (n = 1,241 [33.9%]), raccoons (1,030 [28.1%]), skunks (691 [18.9%]), and foxes (314 [8.6%]) representing the primary hosts confirmed with rabies. Rabid cats (216 [5.9%]), cattle (40 [1.1%]), and dogs (36 [1.0%]) accounted for 94% of rabies cases involving domestic animals in 2021. Five human rabies deaths were reported in 2021. CLINICAL RELEVANCE: The number of animal rabies cases reported in the US decreased significantly during 2021; this is thought to be due to factors related to the COVID-19 pandemic.


Subject(s)
COVID-19 , Cat Diseases , Cattle Diseases , Chiroptera , Dog Diseases , Rabies , Animals , Cats , Cattle , Dogs , Humans , Animals, Domestic , Animals, Wild , Cat Diseases/epidemiology , Cattle Diseases/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Dog Diseases/epidemiology , Foxes , Mephitidae , New York , Pandemics , Population Surveillance , Rabies/epidemiology , Rabies/veterinary , Raccoons , United States/epidemiology
11.
Mem Inst Oswaldo Cruz ; 117: e220177, 2023.
Article in English | MEDLINE | ID: covidwho-2244048

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in domestic animals have occurred from the beginning of the pandemic to the present time. Therefore, from the perspective of One Health, investigating this topic is of global scientific and public interest. OBJECTIVES: The present study aimed to determine the presence of SARS-CoV-2 in domestic animals whose owners had coronavirus disease 2019 (COVID-19). METHODS: Nasopharyngeal and faecal samples were collected in Uruguay. Using quantitative polymerase chain reaction (qPCR), we analysed the presence of the SARS-CoV-2 genome. Complete genomes were obtained using ARTIC enrichment and Illumina sequencing. Sera samples were used for virus neutralisation assays. FINDINGS: SARS-CoV-2 was detected in an asymptomatic dog and a cat. Viral genomes were identical and belonged to the P.6 Uruguayan SARS-CoV-2 lineage. Only antiserum from the infected cat contained neutralising antibodies against the ancestral SARS-CoV-2 strain and showed cross-reactivity against the Delta but not against the B.A.1 Omicron variant. MAIN CONCLUSIONS: Domestic animals and the human SARS-CoV-2 P.6 variant comparison evidence a close relationship and gene flow between them. Different SARS-CoV-2 lineages infect dogs and cats, and no specific variants are adapted to domestic animals. This first record of SARS-CoV-2 in domestic animals from Uruguay supports regular surveillance of animals close to human hosts.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Cats , Animals , Humans , Dogs , SARS-CoV-2/genetics , Uruguay , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Animals, Domestic
12.
BMC Microbiol ; 23(1): 7, 2023 01 09.
Article in English | MEDLINE | ID: covidwho-2196045

ABSTRACT

INTRODUCTION: Globally, the highest burden of bovine and human tuberculosis resides in Africa and Asia. Tuberculosis (TB) is the second leading single infectious killer after severe acute respiratory syndrome corona virus-2 (SARSCOV-2). Bovine TB remains a treat to wild and domesticated animals, humans and hinders international trade in endemic countries like Nigeria. We aimed at determining the prevalence of bovine and human tuberculosis, and the spoligotypes of Mycobacterium tuberculosis complex in cattle and humans in Maiduguri. METHODS: We conducted a cross sectional study on bovine and human tuberculosis in Maiduguri, Borno state. We calculated sample size using the method of Thrusfield. Lesions suggestive of TB from 160 slaughtered cattle were obtained from Maiduguri Central Abattoir. Sputum samples from humans; 82 abattoir workers and 147 suspected TB patients from hospitals/clinics were obtained. Lesions and sputum samples were cultured for the isolation of Mycobacterium spp. Positive cultures were subjected genus typing, deletion analysis and selected isolates were spoligotyped. Data was analysed using SPSS VERSION 16.0. RESULTS: Prevalence of 32.5% (52/160) was obtained in cattle. Damboa local government area (LGA), where majority of the infected animals were obtained from had 35.5% bTB prevalence. All categories analysed (breed, age, sex, body conformation and score) had P-values that were not significant (P > 0.05). Sputum culture revealed a prevalence of 3.7% (3/82) from abattoir workers and 12.2% from hospitals/clinics. A significant P-value (0.03) was obtained when positive culture from abattoir and that of hospitals/clinics were compared. Out of the 52 culture positive isolates obtained from cattle, 26 (50%) belonged to M. tuberculosis complex (MTC) and 17/26 (65.4%) were characterized as M. bovis. In humans, 7/12 (58.3%) MTC obtained were characterized as M. tuberculosis. Spoligotyping revealed SB0944 and SB1025 in cattle, while SIT838, SIT61 of LAM10_CAM and SIT1054, SIT46 of Haarlem (H) families were obtained from humans. CONCLUSIONS: Cattle in Damboa LGA need to be screened for bTB as majority of the infected animals were brought from there. Our findings revealed the presence of SB0944 and SB1025 spoligotypes from cattle in Borno state. We isolated M. tuberculosis strain of the H family mainly domiciled in Europe from humans.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis, Bovine , Tuberculosis , Animals , Cattle , Humans , Animals, Domestic , Cross-Sectional Studies , Nigeria/epidemiology , Prevalence , Tuberculosis/epidemiology , Tuberculosis/veterinary , Tuberculosis/microbiology , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/microbiology
13.
Biosensors (Basel) ; 12(7)2022 Jun 26.
Article in English | MEDLINE | ID: covidwho-1963720

ABSTRACT

Zoonoses and animal diseases threaten human health and livestock biosecurity and productivity. Currently, laboratory confirmation of animal disease outbreaks requires centralized laboratories and trained personnel; it is expensive and time-consuming, and it often does not coincide with the onset or progress of diseases. Point-of-care (POC) diagnostics are rapid, simple, and cost-effective devices and tests, that can be directly applied on field for the detection of animal pathogens. The development of POC diagnostics for use in human medicine has displayed remarkable progress. Nevertheless, animal POC testing has not yet unfolded its full potential. POC devices and tests for animal diseases face many challenges, such as insufficient validation, simplicity, and portability. Emerging technologies and advanced materials are expected to overcome some of these challenges and could popularize animal POC testing. This review aims to: (i) present the main concepts and formats of POC devices and tests, such as lateral flow assays and lab-on-chip devices; (ii) summarize the mode of operation and recent advances in biosensor and POC devices for the detection of farm animal diseases; (iii) present some of the regulatory aspects of POC commercialization in the EU, USA, and Japan; and (iv) summarize the challenges and future perspectives of animal POC testing.


Subject(s)
Animal Diseases , Biosensing Techniques , Animal Diseases/diagnosis , Animals , Animals, Domestic , Farms , Humans , Lab-On-A-Chip Devices , Laboratories , Point-of-Care Systems , Point-of-Care Testing
14.
Glycobiology ; 32(9): 791-802, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1873912

ABSTRACT

Sialic acids are used as a receptor by several viruses and variations in the linkage type or C-5 modifications affect the binding properties. A species barrier for multiple viruses is present due to α2,3- or α2,6-linked sialic acids. The C-5 position of the sialic acid can be modified to form N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc), which acts as a determinant for host susceptibility for pathogens such as influenza A virus, rotavirus, and transmissible gastroenteritis coronavirus. Neu5Gc is present in most mammals such as pigs and horses but is absent in humans, ferrets, and dogs. However, little is known about C-5 content in wildlife species or how many C-5 modified sialic acids are present on N-linked glycans or glycolipids. Using our previously developed tissue microarray system, we investigated how 2 different lectins specific for Neu5Gc can result in varying detection levels of Neu5Gc glycans. We used these lectins to map Neu5Gc content in wild Suidae, Cervidae, tigers, and European hedgehogs. We show that Neu5Gc content is highly variable among different species. Furthermore, the removal of N-linked glycans reduces the binding of both Neu5Gc lectins while retention of glycolipids by omitting methanol treatment of tissues increases lectin binding. These findings highlight the importance of using multiple Neu5Gc lectins as the rich variety in which Neu5Gc is displayed can hardly be detected by a single lectin.


Subject(s)
Sialic Acids , Viruses , Animals , Animals, Domestic/metabolism , Dogs , Ferrets/metabolism , Glycolipids , Horses , Humans , Lectins , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids , Polysaccharides , Sialic Acids/metabolism , Swine
15.
PLoS One ; 16(4): e0250853, 2021.
Article in English | MEDLINE | ID: covidwho-1833535

ABSTRACT

BACKGROUND: Infection by SARS-CoV-2 in domestic animals has been related to close contact with humans diagnosed with COVID-19. Objectives: To assess the exposure, infection, and persistence by SARS-CoV-2 of dogs and cats living in the same households of humans that tested positive for SARS-CoV-2, and to investigate clinical and laboratory alterations associated with animal infection. METHODS: Animals living with COVID-19 patients were longitudinally followed and had nasopharyngeal/oropharyngeal and rectal swabs collected and tested for SARS-CoV-2. Additionally, blood samples were collected for laboratory analysis, and plaque reduction neutralization test (PRNT90) to investigate specific SARS-CoV-2 antibodies. RESULTS: Between May and October 2020, 39 pets (29 dogs and 10 cats) of 21 patients were investigated. Nine dogs (31%) and four cats (40%) from 10 (47.6%) households were infected with or seropositive for SARS-CoV-2. Animals tested positive from 11 to 51 days after the human index COVID-19 case onset of symptoms. Three dogs tested positive twice within 14, 30, and 31 days apart. SARS-CoV-2 neutralizing antibodies were detected in one dog (3.4%) and two cats (20%). In this study, six out of thirteen animals either infected with or seropositive for SARS-CoV-2 have developed mild but reversible signs of the disease. Using logistic regression analysis, neutering, and sharing bed with the ill owner were associated with pet infection. CONCLUSIONS: The presence and persistence of SARS-CoV-2 infection have been identified in dogs and cats from households with human COVID-19 cases in Rio de Janeiro, Brazil. People with COVID-19 should avoid close contact with their pets during the time of their illness.


Subject(s)
COVID-19/epidemiology , COVID-19/veterinary , Pets/virology , Animals , Animals, Domestic/virology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Brazil/epidemiology , Cat Diseases , Cats , Dog Diseases , Dogs , Longitudinal Studies , Prevalence , SARS-CoV-2/pathogenicity
16.
J Am Vet Med Assoc ; 260(10): 1157-1165, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1834225

ABSTRACT

OBJECTIVE: To provide epidemiological information on animal and human cases of rabies in the US during 2020 and summaries of 2020 rabies surveillance for Canada and Mexico. ANIMALS: All animals submitted for laboratory diagnosis of rabies in the US during 2020. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided 2020 rabies surveillance data. Data were analyzed temporally and geographically to assess trends in domestic and wildlife rabies cases. RESULTS: During 2020, 54 jurisdictions submitted 87,895 animal samples for rabies testing, of which 85,483 (97.3%) had a conclusive (positive or negative) test result. Of these, 4,479 (5.2%) tested positive for rabies, representing a 4.5% decrease from the 4,690 cases reported in 2019. Texas (n = 580 [12.9%]), Pennsylvania (371 [8.3%]), Virginia (351 [7.8%]), New York (346 [7.7%]), North Carolina (301 [6.7%]), New Jersey (257 [5.7%]), Maryland (256 [5.7%]), and California (248 [5.5%]) together accounted for > 60% of all animal rabies cases reported in 2020. Of the total reported rabid animals, 4,090 (91.3%) involved wildlife, with raccoons (n = 1,403 [31.3%]), bats (1,400 [31.3%]), skunks (846 [18.9%]), and foxes (338 [7.5%]) representing the primary hosts confirmed with rabies. Rabid cats (288 [6.4%]), cattle (43 [1.0%]), and dogs (37 [0.8%]) accounted for 95% of rabies cases involving domestic animals in 2020. No human rabies cases were reported in 2020. CONCLUSIONS AND CLINICAL RELEVANCE: For the first time since 2006, the number of samples submitted for rabies testing in the US was < 90,000; this is thought to be due to factors related to the COVID-19 pandemic, as similar decreases in sample submission were also reported by Canada and Mexico.


Subject(s)
COVID-19 , Cat Diseases , Cattle Diseases , Chiroptera , Dog Diseases , Rabies , Cats , Dogs , Animals , United States , Cattle , Humans , Rabies/epidemiology , Rabies/veterinary , Animals, Domestic , Pandemics , Cat Diseases/epidemiology , Dog Diseases/epidemiology , Cattle Diseases/epidemiology , Equidae , Population Surveillance , COVID-19/veterinary , Raccoons , Mephitidae , Animals, Wild , Foxes , New York
17.
Zoonoses Public Health ; 69(5): 587-592, 2022 08.
Article in English | MEDLINE | ID: covidwho-1794548

ABSTRACT

SARS-CoV-2 infection has been described in a wide range of species, including domestic animals such as dogs and cats. Illness in dogs is usually self-limiting, and further diagnostics may not be pursued if clinical signs resolve or they respond to empirical treatment. As new variants emerge, the clinical presentation and role in transmission may vary in animals. This report highlights different clinical presentations and immunological responses in two SARS-CoV-2 Delta-variant-positive dogs with similar exposure to the same fully vaccinated human with a SARS-CoV-2 infection and emphasizes the need for active surveillance and additional One Health research on SARS-CoV-2 variant infections in companion animals and other species.


Subject(s)
COVID-19 , Dog Diseases , Animals , Animals, Domestic , COVID-19/veterinary , Cat Diseases , Cats , Dog Diseases/epidemiology , Dog Diseases/prevention & control , Dogs , Georgia , Humans , SARS-CoV-2/genetics
18.
Transbound Emerg Dis ; 69(5): e3250-e3254, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1774903

ABSTRACT

We conducted an exploratory serological survey to evaluate the exposure of Bornean wild carnivores to several viruses common to domestic felids, at interface areas between protected forest and industrial agriculture in the Kinabatangan floodplain (Sabah, Malaysia). Blood samples, collected from wild carnivores (n = 21) and domestic cats (n = 27), were tested for antibodies against feline coronavirus (FCoV), feline panleukopenia virus (FPLV), feline herpesvirus (FHV) and feline calicivirus (FCV), using commercial enzyme-linked immunosorbent assay (ELISA) test kits. Anti-FCoV antibodies were detected in most species, including one flat-headed cat (Prionailurus planiceps, [1/2]), leopard cats (Prionailurus bengalensis, [2/5]), Malay civets (Viverra tangalunga, [2/11]) and domestic cats (Felis catus, [2/27]). Anti-FCV antibodies were present in all domestic cats and one flat-headed cat, while anti-FPLV antibodies were identified in Sunda clouded leopards (Neofelis diardi, [2/2]), domestic cats [12/27] and Malay civets [2/11]. Anti-FHV antibodies were only detected in domestic cats [2/27]. Our findings indicate pathogen transmission risk between domestic and wild carnivore populations at the domestic animal-wildlife interface, emphasizing the concern for wildlife conservation for several endangered wild carnivores living in the area. Special consideration should be given to species that benefit from their association with humans and have the potential to carry pathogens between forest and plantations (e.g., Malay civets and leopard cats). Risk reduction strategies should be incorporated and supported as part of conservation actions in human-dominated landscapes.


Subject(s)
Carnivora , Cat Diseases , Felidae , Animals , Animals, Domestic , Animals, Wild , Antibodies, Viral , Cats , Feline Panleukopenia Virus , Humans , Viverridae
19.
Zoonoses Public Health ; 69(6): 737-745, 2022 09.
Article in English | MEDLINE | ID: covidwho-1605551

ABSTRACT

A cross-sectional survey of SARS-CoV-2 in domestic dogs and cats was conducted in high-risk areas, five subdistricts of Samut Sakhon Province, the epicenter of the second wave of the COVID-19 outbreak in Thailand in February 2021. A total of 523 swab samples (nasal, oral, and rectal swabs) and 159 serum samples from dogs (n = 83) and cats (n = 93) were collected and tested for SARS-CoV-2 RNA and antibodies. All swab samples tested negative for SARS-CoV-2 RNA by real-time RT-PCR with three panels of specific primers and probes. Although all dogs and cats were negative for SARS-CoV-2 RNA, 3.14% (5/159) had anti-N-IgG antibodies against SARS-CoV-2 by indirect multispecies ELISA. Our results demonstrated SARS-CoV-2 exposure in domestic animals living in high-risk areas during the second wave of the COVID-19 outbreak in Thailand. Thus, the use of one health approach for monitoring SARS-CoV-2 in domestic animals in high-risk areas of COVID-19 outbreaks should be routinely conducted and will provide benefits to risk communications in communities.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Animals, Domestic , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Cross-Sectional Studies , Disease Outbreaks/veterinary , Dog Diseases/epidemiology , Dogs , RNA, Viral/genetics , SARS-CoV-2 , Thailand/epidemiology
20.
Virulence ; 12(1): 2777-2786, 2021 12.
Article in English | MEDLINE | ID: covidwho-1565872

ABSTRACT

Several animal species, including ferrets, hamsters, monkeys, and raccoon dogs, have been shown to be susceptible to experimental infection by the human severe acute respiratory syndrome coronaviruses, such as SARS-CoV and SARS-CoV-2, which were responsible for the 2003 SARS outbreak and the 2019 coronavirus disease (COVID-19) pandemic, respectively. Emerging studies have shown that SARS-CoV-2 natural infection of pet dogs and cats is also possible, but its prevalence is not fully understood. Experimentally, it has been demonstrated that SARS-CoV-2 replicates more efficiently in cats than in dogs and that cats can transmit the virus through aerosols. With approximately 470 million pet dogs and 370 million pet cats cohabitating with their human owners worldwide, the finding of natural SARS-CoV-2 infection in these household pets has important implications for potential zoonotic transmission events during the COVID-19 pandemic as well as future SARS-related outbreaks. Here, we describe some of the ongoing worldwide surveillance efforts to assess the prevalence of SARS-CoV-2 exposure in companion, captive, wild, and farmed animals, as well as provide some perspectives on these efforts including the intra- and inter-species coronavirus transmissions, evolution, and their implications on the human-animal interface along with public health. Some ongoing efforts to develop and implement a new COVID-19 vaccine for animals are also discussed. Surveillance initiatives to track SARS-CoV-2 exposures in animals are necessary to accurately determine their impact on veterinary and human health, as well as define potential reservoir sources of the virus and its evolutionary and transmission dynamics.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals, Zoo/virology , COVID-19/veterinary , Pets/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines , Disease Reservoirs/statistics & numerical data , Disease Reservoirs/virology , Ferrets/virology , Humans , Prevalence , Viral Zoonoses/epidemiology , Viral Zoonoses/prevention & control , Viral Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL